Neurobiology of Disease Presenilin 1 Mutants Impair the Self-Renewal and Differentiation of Adult Murine Subventricular Zone-Neuronal Progenitors via Cell-Autonomous Mechanisms Involving Notch Signaling
نویسندگان
چکیده
The vast majority of pedigrees with familial Alzheimer’s disease (FAD) are caused by inheritance of mutations in the PSEN1 1 gene. While genetic ablation studies have revealed a role for presenilin 1 (PS1) in embryonic neurogenesis, little information has emerged regarding the potential effects of FAD-linked PS1 variants on proliferation, self-renewal and differentiation, key events that control cell fate commitment of adult brain neural progenitors (NPCs). We used adult brain subventricular zone (SVZ)-derived NPC cultures transduced with recombinant lentivirus as a means to investigate the effects of various PS1 mutants on self-renewal and differentiation properties. We now show that viral expression of several PS1 mutants in NPCs leads to impaired self-renewal and altered differentiation toward neuronal lineage, in vitro. In line with these observations, diminished constitutive proliferation and steady-state SVZ progenitor pool size was observed in vivo in transgenic mice expressing the PS1 E9 variant. Moreover, NPC cultures established from the SVZ of adult mice expressing PS1 E9 exhibit reduced self-renewal capacity and premature exit toward neuronal fates. To these findings, we show that both the levels of endogenous Notch/CBF-1-transcriptional activity and transcripts encoding Notch target genes are diminished in SVZ NPCs expressing PS1 E9. The deficits in self-renewal and multipotency are restored by expression of Notch1-ICD or a downstream target of the Notch pathway, Hes1. Hence, we argue that a partial reduction in PS-dependent -secretase processing of the Notch, at least in part, accounts for the impairments observed in SVZ NPCs expressing the FAD-linked PS1 E9 variant.
منابع مشابه
Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal.
Neural stem cells (NSCs) in the postnatal mammalian brain self-renew and are a source of neurons and glia. To date, little is known about the molecular and cellular mechanisms regulating the maintenance and differentiation of these multipotent progenitors. We show that Jagged1 is required by mitotic cells in the subventricular zone (SVZ) and stimulates self-renewal of multipotent epidermal grow...
متن کاملWnt signaling regulates neuronal differentiation of cortical intermediate progenitors.
Cortical intermediate progenitors (IPs) comprise a secondary neuronal progenitor pool that arises from radial glia (RG). IPs are essential for generating the correct number of cortical neurons, but the factors that regulate the expansion and differentiation of IPs in the embryonic cortex are essentially unknown. In this study, we show that the Wnt-β-catenin pathway (canonical Wnt pathway) regul...
متن کاملActivation of Type 1 Cannabinoid Receptor (CB1R) Promotes Neurogenesis in Murine Subventricular Zone Cell Cultures
The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R) activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ) stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive), neurons and ast...
متن کاملBotch promotes neurogenesis by antagonizing Notch.
Regulation of self-renewal and differentiation of neural stem cells is still poorly understood. Here we investigate the role of a developmentally expressed protein, Botch, which blocks Notch, in neocortical development. Downregulation of Botch in vivo leads to cellular retention in the ventricular and subventricular zones, whereas overexpression of Botch drives neural stem cells into the interm...
متن کاملThe rho GTPase Rac1 is required for proliferation and survival of progenitors in the developing forebrain.
Progenitor cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing forebrain give rise to neurons and glial cells, and are characterized by distinct morphologies and proliferative behaviors. The mechanisms that distinguish VZ and SVZ progenitors are not well understood, although the homeodomain transcription factor Cux2 and Cyclin D2, a core component of the cell cycl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010